The generator matrix 1 1 0 1 X 0 1 0 1 X 1 0 0 1 1 0 1 X X 0 1 X 1 1 X 1 1 1 1 0 0 1 X 1 1 1 0 1 1 1 X 1 X 1 1 1 0 0 1 1 1 0 X X X 1 1 1 0 1 1 1 X 1 1 1 1 1 1 1 0 0 1 1 0 X+1 1 0 X 1 1 1 0 X X+1 1 X 0 1 1 0 1 1 1 X X 1 0 0 0 X+1 X+1 X+1 X 1 1 1 X+1 1 X+1 1 1 X 0 1 0 1 1 0 1 1 0 X+1 X+1 X+1 1 1 1 1 1 1 X+1 0 X+1 1 1 1 X 1 1 X X 0 0 1 1 X 0 0 0 X 1 1 1 X+1 X 1 X 1 1 1 0 X X X 1 X+1 0 1 1 1 0 1 X+1 X 1 1 X 1 0 X 0 0 X+1 X+1 0 0 X+1 X 0 X X+1 X+1 X+1 X X X 0 X+1 0 X X+1 X+1 1 0 X 1 0 1 X 0 1 0 0 X+1 1 X+1 0 0 0 1 1 0 0 0 0 0 0 X 1 1 1 X+1 X+1 X+1 1 X+1 1 0 0 1 X X X+1 1 X+1 X X+1 1 1 X 1 1 0 X X X+1 1 X+1 X+1 0 X 0 X X+1 X+1 X X+1 X 1 X 1 0 X+1 0 X 0 X X 0 X 1 0 1 0 X+1 1 1 0 X+1 1 X 0 0 0 X+1 0 0 0 0 0 0 0 X X X X X X X X 0 X X 0 X X 0 0 0 X 0 0 X X 0 X X 0 0 X 0 0 0 X 0 X 0 X X X 0 X X X X X 0 0 0 X 0 X 0 0 0 X X 0 X X 0 0 0 0 X X 0 0 0 generates a code of length 74 over Z2[X]/(X^2) who´s minimum homogenous weight is 69. Homogenous weight enumerator: w(x)=1x^0+48x^69+93x^70+58x^71+38x^72+46x^73+59x^74+38x^75+14x^76+26x^77+14x^78+18x^79+5x^80+4x^81+11x^82+4x^83+2x^85+6x^86+8x^87+4x^88+2x^89+6x^90+2x^91+2x^92+3x^94 The gray image is a linear code over GF(2) with n=148, k=9 and d=69. This code was found by an older version of Heurico in 0 seconds.